首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photonic characteristics and ex vivo imaging of Escherichia coli-Xen14 within the bovine reproductive tract
Authors:J Curbelo  S Willard
Institution:a Department of Animal and Dairy Sciences and the Mississippi State University, Mississippi State, Mississippi, USA
b Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi, USA
Abstract:The objectives of this study were to (1) characterize the photonic properties of Escherichia coli-Xen14 and (2) conduct photonic imaging of E. coli-Xen14 within bovine reproductive tract segments (RTS) ex vivo (Bos indicus). E. coli-Xen14 was grown for 24 h in Luria Bertani medium (LB), with or without kanamycin (KAN). Every 24 h, for an 8-d interval, inoculums were imaged and photonic emissions (PE) collected. Inoculums were subcultured and plated daily to determine the colony forming units (CFU) and ratio of photon emitters to nonemitters. In the second objective, abattoir-derived bovine reproductive tracts (n = 9) were separated into posterior and anterior vagina, cervix, uterine body, and uterine horns. Two concentrations (3.2 × 108 and 3.2 × 106 CFU/200 μL for relative High] and Low], respectively) of E. coli-Xen14 were placed in translucent tubes for detection of PE through RTS. The CFU did not differ (P = 0.31) over time with or without KAN presence; they remained stable with 99.93% and 99.98% photon emitters, respectively. However, PE were lower (P < 0.0001) in cultures containing KAN than in those containing no KAN (629.8 ± 117.7 vs. 3012.0 ± 423.5 relative lights units per second RLU/sec], respectively). On average, the percentage of PE between RTS, for both concentrations, was higher (P < 0.05) in the uterine body. In summary, E. coli-Xen14 remained stable with respect to the proportions of photon emitters with or without KAN (used to selectively culture E. coli-Xen14). However, KAN presence suppressed photonic activity. The ability to detect PE through various segments of the reproductive tract demonstrated the feasibility of monitoring the presence of E. coli-Xen14 in the bovine reproductive tract ex vivo.
Keywords:Biophotonics  Escherichia coli  Reproductive tract  Uterus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号