首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage.
Authors:C Hill  L A Miller  and T R Klaenhammer
Institution:Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624.
Abstract:The conjugative plasmid pTR2030 confers bacteriophage resistance to lactococci by two independent mechanisms, an abortive infection mechanism (Hsp+) and a restriction and modification system (R+/M+). pTR2030 transconjugants of lactococcal strains are used in the dairy industry to prolong the usefulness of mesophilic starter cultures. One bacteriophage which has emerged against a pTR2030 transconjugant is not susceptible to either of the two defense systems encoded by the plasmid. Phage nck202.50 (phi 50) is completely resistant to restriction by pTR2030. A region of homology between pTR2030 and phi 50 was subcloned, physically mapped, and sequenced. A region of 1,273 bp was identical in both plasmid and phage, suggesting that the fragment had recently been transferred between the two genomes. Sequence analysis confirmed that the transferred region encoded greater than 55% of the amino domain of the structural gene for a type II methylase designated LlaI. The LlaI gene is 1,869 bp in length and shows organizational similarities to the type II A methylase FokI. In addition to the amino domain, upstream sequences, possibly containing the expression signals, were present on the phage genome. The phage phi 50 fragment containing the methylase amino domain, designated LlaPI, when cloned onto the shuttle vector pSA3 was capable of modifying another phage genome in trans. This is the first report of the genetic exchange between a bacterium and a phage which confers a selective advantage on the phage. Definition of the LlaI system on pTR2030 provides the first evidence that type II systems contribute to restriction and modification phenotypes during host-dependent replication of phages in lactococci.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号