Comparison of glycerophosphate acyltransferases from Euglena chloroplasts and microsomes |
| |
Authors: | S Hershenson B A Boehler-Kohler M L Ernst-Fonberg |
| |
Affiliation: | 1. Department of Biochemistry, Quillen-Dishner College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA;2. The Department of Biology, Yale University, New Haven, Connecticut 06520 USA |
| |
Abstract: | The acylation of sn-glycerol 3-phosphate is a common reaction in the pathways leading to the biosynthesis of glycerol-derived phospholipids, galactolipids, and sulfolipids. Enzymes catalyzing this reaction have been solubilized from Euglena chloroplasts, microsomes, and mitochondria (B. A. Boehler and M. L. Ernst-Fonberg (1976) Arch. Biochem. Biophys. 175, 229-235; L. V. Grobovsky, S. Hershenson, and M. L. Ernst-Fonberg (1979) FEBS Lett. 102, 261-264). Some characteristics of the reactions catalyzed by the acyl-CoA:sn-glycerol-3-phosphate O-acyltransferases (EC 2.3.1.15) solubilized from chloroplasts and microsomes of Euglena have been compared. Although the two enzymes have some common features, including stimulation by bovine serum albumin and phosphatidyl choline and sensitivity to sulfhydryl-binding reagents, they differ in their stabilities and responses to salt and glycerol. They exhibit different acyl-CoA substrate dependency curves. The proportions of monoacyl sn-glycerol-3-phosphate acyltransferase activity differ in the two solubilized enzyme preparations, and different products are produced by each of the glycerophosphate acyltransferases solubilized from chloroplasts and microsomes, respectively. Neither glycerophosphate acyltransferase will use palmitoyl- or myristoyl-acyl carrier protein (ACP) as a substrate whereas both use the corresponding CoA esters. Neither is inhibited by ACP, but the enzyme from microsomes is inhibited by CoA. |
| |
Keywords: | To whom reprint requests should be addressed at East Tennessee State University. |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|