首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy
Authors:Liu L  Wang M  Du G  Chen J
Affiliation: School of Biotechnology, Jiangnan University, Wuxi, China;
 School of Food Science and Technology, Jiangnan University, Wuxi, China;
 Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
Abstract:Aims: Enhanced hyaluronic acid (HA) production of Streptococcus zooepidemicus by redirecting carbon flux through an intermittent alkaline‐stress strategy. Methods and Results: pH value was kept at 7·0 for the first 6 h, and then intermittently switched to 8·5 for 1 h and back to 7·0 for 1 h until the end of fermentation at 16 h (one pH switch cycle every 2 h). With this intermittent alkaline‐stress strategy, HA production was increased to 6·5 ± 0·2 g l?1 from 5·0 ± 0·1 g l?1 of the control, in which pH was always kept at 7·0. In addition, biomass and lactic acid concentration decreased by 24% and 14%, respectively, while acetic acid concentration increased by 10% under intermittent alkaline stress. The redirection of carbon flux from lactic acid to acetic acid was further supported by the decreased lactate dehydrogenase activity and the increased acetate kinase activity. As indicated by the increased NADH oxidase (NOX) activity, intermittent alkaline‐stress induced a more oxidative intracellular environment which would facilitate HA synthesis. Conclusions: Overproduction of HA was realized by redirecting carbon flux through the proposed intermittent alkaline‐stress strategy. Significance and Impact of the Study: This study clearly demonstrated the importance of metabolic‐pathway‐analysis based fermentation strategy in industrial processes and provided an alternative optimization approach for high viscosity fermentation.
Keywords:hyaluronic acid    intermittent alkaline stress    Streptococcus zooepidemicus
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号