首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae
Authors:Lui Doris Y  Peoples-Holst Tamara L  Mell Joshua Chang  Wu Hsin-Yen  Dean Eric W  Burgess Sean M
Institution:Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
Abstract:A unique aspect of meiosis is the segregation of homologous chromosomes at the meiosis I division. The pairing of homologous chromosomes is a critical aspect of meiotic prophase I that aids proper disjunction at anaphase I. We have used a site-specific recombination assay in Saccharomyces cerevisiae to examine allelic interaction levels during meiosis in a series of mutants defective in recombination, chromatin structure, or intracellular movement. Red1, a component of the chromosome axis, and Mnd1, a chromosome-binding protein that facilitates interhomolog interaction, are critical for achieving high levels of allelic interaction. Homologous recombination factors (Sae2, Rdh54, Rad54, Rad55, Rad51, Sgs1) aid in varying degrees in promoting allelic interactions, while the Srs2 helicase appears to play no appreciable role. Ris1 (a SWI2/SNF2 related protein) and Dot1 (a histone methyltransferase) appear to play minor roles. Surprisingly, factors involved in microtubule-mediated intracellular movement (Tub3, Dhc1, and Mlp2) appear to play no appreciable role in homolog juxtaposition, unlike their counterparts in fission yeast. Taken together, these results support the notion that meiotic recombination plays a major role in the high levels of homolog interaction observed during budding yeast meiosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号