首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Illumination increases the phosphorylation state of maize leaf phosphoenolpyruvate carboxylase by causing an increase in the activity of a protein kinase
Authors:G A McNaughton  C MacKintosh  C A Fewson  M B Wilkins  H G Nimmo
Institution:Department of Biochemistry, University of Glasgow, U.K.
Abstract:Illumination of maize leaves increases the phosphorylation state of phosphoenolpyruvate carboxylase and reduces the sensitivity of the enzyme to feedback inhibition by malate. Red, white and blue light were each found to be equally potent, and the effect of light was blocked by 3(3,4-dichlorophenyl)-1,1-dimethylurea. A phosphoenolpyruvate carboxylase kinase was partially purified from illuminated maize leaves by a three-step procedure. Phosphorylation of phosphoenolpyruvate carboxylase by this protein kinase reached 0.7-0.8 molecules/subunit and correlated with a 3- to 4-fold increase in Ki for malate. The protein kinase was inhibited by L-malate, but was insensitive to a number of other potential regulators. Freshly prepared and desalted extracts of darkened maize leaves contained very little kinase activity, but the activity appeared when leaves were illuminated for 30-60 min before extraction. The catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle, but not that of protein phosphatase 1, could dephosphorylate phosphoenolpyruvate carboxylase. The protein phosphatases 1 and 2A activities of maize leaves were not affected by illumination. It is suggested that the major means by which light stimulates the phosphorylation of phosphoenolpyruvate carboxylase is by an increase in the activity of the protein kinase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号