首页 | 本学科首页   官方微博 | 高级检索  
     


Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity
Authors:DiGiandomenico Antonio  Matewish Mauricia J  Bisaillon Amy  Stehle John R  Lam Joseph S  Castric Peter
Affiliation:Department of Biological Sciences, Duquesne University, Pittsburg, PA 15282, USA.
Abstract:The structural similarity between the pilin glycan and the O-antigen of Pseudomonas aeruginosa 1244 suggested that they have a common metabolic origin. Mutants of this organism lacking functional wbpM or wbpL genes synthesized no O-antigen and produced only non-glycosylated pilin. Complementation with plasmids containing functional wbpM or wbpL genes fully restored the ability to produce both O-antigen and glycosylated pilin. Expression of a cosmid clone containing the O-antigen biosynthetic gene cluster from P. aeruginosa PA103 (LPS serotype O11) in P. aeruginosa 1244 (LPS serotype O7) resulted in the production of strain 1244 pili that contained both O7 and O11 antigens. The presence of the O11 repeating unit was confirmed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Expression of the O-antigen biosynthesis cluster from Escherichia coli O157:H7 in strain 1244 resulted in the production of pilin that contained both the endogenous Pseudomonas as well as the Escherichia O157 O-antigens. A role for pilO in the glycosylation of pilin in P. aeruginosa is evident as the cloned pilAO operon produced glycosylated strain 1244 pilin in eight heterologous P. aeruginosa strains. Removal of the pilO gene resulted in the production of unmodified strain 1244 pilin. These results show that the pilin glycan of P. aeruginosa 1244 is a product of the O-antigen biosynthetic pathway. In addition, the structural diversity of the O-antigens used by the 1244 pilin glycosylation apparatus indicates that the glycan substrate specificity of this reaction is extremely low.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号