首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power
Authors:Paetkau David  Slade Robert  Burden Michael  Estoup Arnaud
Affiliation:Department of Zoology and Entomology, University of Queensland, St. Lucia, QLD 4072, Australia.
Abstract:Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (DLR) appeared to be an effective way to predict whether F0 immigrants could be identified for a particular pair of populations using a given set of markers.
Keywords:admixture linkage disequilibrium    genetic assignment    immigrants    migration rate    power    statistical significance
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号