首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic downregulation of Nogo receptor expression in the rat forebrain by amphetamine
Authors:Ming-Lei Guo  Bing Xue  Dao-Zhong Jin  Li-Min Mao  John Q. Wang
Affiliation:1. Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;2. Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
Abstract:Nogo receptors (NgRs) are a family of cell surface receptors that are broadly expressed in the mammalian brain. These receptors could serve as an inhibitory element in the regulation of activity-dependent axonal growth and spine and synaptic formation in the adult animal brain. Thus, through balancing the structural response to changing cellular and synaptic inputs, NgRs participate in constructing activity-dependent morphological plasticity. Psychostimulants have been well documented to induce morphological plasticity critical for addictive properties of stimulants, although underlying molecular mechanisms are poorly understood. In this study, we initiated a study to investigate the response of NgRs to a stimulant. We tested the effect of acute administration of amphetamine on protein expression of two principal NgR subtypes (NgR1 and NgR2) in the rat striatum, medial prefrontal cortex (mPFC) and hippocampus. We found that a single injection of amphetamine induced a rapid and time-dependent decrease in NgR1 and NgR2 expression in the striatum and mPFC. A relatively delayed and time-dependent decrease in expression of the two receptors was seen in the hippocampus. The drug-induced decrease in NgR1 and NgR2 expression in the three forebrain regions was dose-dependent. A behaviorally active dose of the drug was required to trigger a significant reduction in NgR1 and NgR2 expression. These data indicate that NgRs are subject to the regulation by the stimulant. Amphetamine exposure exerts the inhibitory modulation of basal NgR1 and NgR2 expression in the key structures of reward circuits in vivo.
Keywords:NgR   Reticulon 4 receptor   Nogo-66   Stimulant   Addiction   Spine density   Striatum   Prefrontal cortex   Hippocampus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号