首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress
Authors:Jia Jia  Yunqi Xiao  Wei Wang  Lina Qing  Yinxiu Xu  Heng Song  Xuechu Zhen  Guizhen Ao  Nabil J Alkayed  Jian Cheng
Institution:1. Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China;2. The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China;3. Institute of Neuroscience, Soochow University, Suzhou, China;4. Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China;5. Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
Abstract:This study investigated whether slow-releasing organic hydrogen sulfide donors act through the same mechanisms as those of inorganic donors to protect neurons from oxidative stress. By inducing oxidative stress in a neuronal cell line HT22 with glutamate, we investigated the protective mechanisms of the organic donors: ADT-OH 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione], the most widely used moiety for synthesizing slow-releasing hydrogen sulfide donors, and ADT, a methyl derivative of ADT-OH. The organic donors were more potent than the inorganic donor sodium hydrogensulfide (NaHS) in protecting HT22 cells against glutamate toxicity. Consistent with previous publications, NaHS partially restored glutamate-depleted glutathione (GSH) levels, protected HT22 from direct free radical damage induced by hydrogen peroxide (H2O2), and NaHS protection was abolished by a KATP channel blocker glibenclamide. However, neither ADT nor ADT-OH enhanced glutamate-depleted GSH levels or protected HT22 from H2O2-induced oxidative stress. Glibenclamide, which abolished NaHS neuroprotection against oxidative stress, did not block ADT and ADT-OH neuroprotection against glutamate-induced oxidative stress. Unexpectedly, we found that glutamate induced AMPK activation and that compound C, a well-established AMPK inhibitor, remarkably protected HT22 from glutamate-induced oxidative stress, suggesting that AMPK activation contributed to oxidative glutamate toxicity. Interestingly, all hydrogen sulfide donors, including NaHS, remarkably attenuated glutamate-induced AMPK activation. However, under oxidative glutamate toxicity, compound C only increased the viability of HT22 cells treated with NaHS, but did not further increase ADT and ADT-OH neuroprotection. Thus, suppressing AMPK activation likely contributed to ADT and ADT-OH neuroprotection. In conclusion, hydrogen sulfide donors acted through differential mechanisms to confer neuroprotection against oxidative toxicity and suppressing AMPK activation was a possible mechanism underlying neuroprotection of organic hydrogen sulfide donors against oxidative toxicity.
Keywords:ADT-OH  5-(4-hydroxyphenyl)-3H-1/2-dithiole-3-thione  ADT  5-(4-methoxyphenyl)-3H-1/2-dithiole-3-thione  AMPK  AMP-activated protein kinase  GSH  glutathione  H2O2  hydrogen peroxide  KATP channel  ATP-sensitive potassium channel  NaHS  sodium hydrogensulfide  ROS  reactive oxygen species
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号