首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An exonic splicing enhancer offsets the atypical GU-rich 3' splice site of human apolipoprotein A-II exon 3
Authors:Arrisi-Mercado Pablo  Romano Maurizio  Muro Andres F  Baralle Francisco E
Institution:International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy.
Abstract:Human apolipoprotein A-II (apoA-II) intron 2/exon 3 junction shows a peculiar tract of alternating pyrimidines and purines (GU tract) that makes the acceptor site deviate significantly from the consensus. However, apoA-II exon 3 is constitutively included in mRNA. We have studied this unusual exon definition by creating a construct with the genomic fragment encompassing the whole gene from apoA-II and its regulatory regions. Transient transfections in Hep3B cells have shown that deletion or replacement of the GU repeats at the 3' splice site resulted in a decrease of apoA-II exon 3 inclusion, indicating a possible role of the GU tract in splicing. However, a 3' splice site composed of the GU tract in heterologous context, such as the extra domain A of human fibronectin or cystic fibrosis transmembrane conductance regulator exon 9, resulted in total skipping of the exons. Next, we identified the exonic cis-acting elements that may affect the splicing efficiency of apoA-II exon 3 and found that the region spanning from nucleotide 87 to 113 of human apoA-II exon 3 is essential for its inclusion in the mRNA. Overlapping deletions and point mutations (between nucleotides 91 and 102) precisely defined an exonic splicing enhancer (ESEwt). UV cross-linking assays followed by immunoprecipitation with anti-SR protein monoclonal antibodies showed that ESEwt, but not mutated ESE RNA, was able to bind both alternative splicing factor/splicing factor 2 and SC35. Furthermore, overexpression of both splicing factors enhanced exon 3 inclusion. These results show that this protein-ESE interaction is able to promote the incorporation of exon 3 in mRNA and suggest that they can rescue the splicing despite the noncanonical 3' splice site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号