首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional analyses of positions across the 5' splice site of the trypanosomatid spliced leader RNA. Implications for base-pair interaction with U5 and U6 snRNAs
Authors:Xu Y  Liu L  Michaeli S
Institution:Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel and the Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
Abstract:In this study, we have used a genetic compensatory approach to examine the functional significance of the previously proposed interaction of spliced leader (SL) RNA with U5 small nuclear RNA (snRNA) (Dungan, J. D., Watkins, K. P., and Agabian, N. (1996) EMBO J. 15, 4016-4029; Xu, Y.-X., Ben Shlomo, H., and Michaeli, S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8473-8478) and the interaction of the SL RNA intron with U6 snRNA analogous to cis-splicing. Mutations were introduced at positions -4, -1, +1, +4, +5, and +7/+8 relative to the SL RNA 5' splice site that were proposed to interact with U5 and U6 snRNAs. All mutants exhibited altered splicing phenotypes compared with the parental strain, showing the importance of these intron and exon positions for trans-splicing. Surprisingly, mutation at invariant +1 position did not abolish splicing completely, unlike cis-splicing, but position +2 had the most severe effect on trans-splicing. Compensatory mutations were introduced in U5 and U6 snRNAs to examine whether the defects resulted from failure to interact with these snRNAs by base pairing. Suppression was observed only for positions +5 and +7/+8 with U5 compensatory mutations and for position +5 with a U6 compensatory mutation, supporting the existence of a base pair interaction of U5 and U6 with the SL RNA intron region. The failure to suppress the other SL RNA mutants by the U5 compensatory mutations suggests that another factor(s) interacts with these key SL RNA positions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号