首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of neurotransmitter release by NO is altered in mesenteric arterial bed of spontaneously hypertensive rats
Authors:Kolo Lacy L  Westfall Thomas C  Macarthur Heather
Institution:Department of Pharmacological and Physiological Science, Saint Louis University, 1402 South Grand Blvd., St. Louis, MO 63104, USA.
Abstract:Nitric oxide (NO) reacts with catecholamines resulting in their deactivation. In the present study with the use of the perfused mesenteric arterial bed as a model of the sympathetic neuroeffector junction, the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) resulted in the enhancement of the periarterial nerve stimulation-induced increase in perfusion pressure and norepinephrine overflow while decreasing neuropeptide Y (NPY) overflow. These changes were prevented by l-arginine, demonstrating that the effects of l-NAME were specific to the inhibition of NOS. From the fact that norepinephrine acts on prejunctional alpha(2)-adrenoceptors to inhibit the evoked release of sympathetic cotransmitters, we carried out experiments in the presence of the alpha(2)-adrenergic receptor antagonist yohimbine to investigate the possibility that the decrease in NPY observed in the presence of l-NAME was due to the increase in bioactive norepinephrine acting on its autoreceptor. Periarterial nerve stimulation in the presence of both l-NAME and yohimbine prevented the previously observed decrease in NPY, indicating that the cause of this decrease was, as predicted, due to alpha(2)-adrenoceptor activation. The periarterial nerve stimulation-induced increase of norepinephrine overflow was greater in the spontaneously hypertensive rat compared with normotensive rats. In contrast to what was observed in the isolated perfused mesenteric arterial bed obtained from normotensive animals, inhibition of NOS did not result in a further increase in the overflow of norepinephrine or in a subsequent decrease in NPY. These results demonstrate that, in addition to being a direct vasodilator, NO, by deactivating norepinephrine, can modulate sympathetic neurotransmission and that this modulation is altered in the spontaneously hypertensive rat.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号