首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signaling via dopamine D1 and D3 receptors oppositely regulates cocaine-induced structural remodeling of dendrites and spines
Authors:Zhang Lei  Li Juan  Liu Nuyun  Wang Bin  Gu Jingjing  Zhang Min  Zhou Zhitao  Jiang Yong  Zhang Lin  Zhang Lu
Institution:Department of Pathophysiology, Southern Medical University, Guangzhou, China.
Abstract:Repeated exposure to cocaine can induce persistent alterations in the brain. The structural remodeling of dendrites and dendritic spines is thought to play a critical role in cocaine addiction. We previously demonstrated that signaling via dopamine D1 and D3 receptors have opposite effects on cocaine-induced gene expression. Here, we show that cocaine-induced structural remodeling in the nucleus accumbens (NAc) and caudoputamen (CPu) is mediated by D1 receptors and inhibited by D3 receptors. In addition, chronic exposure to cocaine results in an altered number of asymmetric spine synapses via the actions of both D1 and D3 receptors. The contradictory effects of D1 and D3 receptor signaling on cocaine-induced structural remodeling is associated with NMDA-receptor R1 subunit (NR1) phosphorylation, and is dependent upon the activation of extracellular signal-regulated kinase (ERK). In addition, we found that D1 and D3 receptor signaling has contradictory effects upon the activation of the myocyte enhancer factor 2 (MEF2), which is involved in the dendritic remodeling after cocaine treatment. Together, these data suggest that dopamine D1 and D3 receptors differentially regulate the cocaine-induced structural remodeling of dendrites and spines via mechanisms involving the consecutive actions of NR1 phosphorylation, ERK activation, and MEF2 activity in the NAc and CPu.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号