首页 | 本学科首页   官方微博 | 高级检索  
     


Endogenous formation of novel halogenated 2'-deoxycytidine. Hypohalous acid-mediated DNA modification at the site of inflammation
Authors:Kawai Yoshichika  Morinaga Hiroshi  Kondo Hajime  Miyoshi Noriyuki  Nakamura Yoshimasa  Uchida Koji  Osawa Toshihiko
Affiliation:Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan. y-kawai@nutr.med.tokushima-u.ac.jp
Abstract:A potential role of DNA damage by leukocyte-derived reactive species in carcinogenesis has been suggested. Leukocyte-derived peroxidases, such as myeloperoxidase and eosinophil peroxidase, use hydrogen peroxide and halides (Cl- and Br-) to generate hypohalous acids (HOCl and HOBr), halogenating intermediates. It has been suggested that these oxidants lead to the formation of halogenated products upon reaction with nucleobases. To verify the consequences of phagocyte-mediated DNA damage at the site of inflammation, we developed a novel monoclonal antibody (mAb2D3) that recognizes the hypohalous acid-modified DNA and found that the antibody most significantly recognized HOCl/HOBr-modified 2'-deoxycytidine residues. The immunoreactivity of HOCl-treated oligonucleotide was attenuated by excess methionine, suggesting that chloramine-like species may be the plausible epitopes of the antibody. On the basis of further characterization combined with mass spectrometric analysis, the epitopes of mAb2D3 were determined to be novel N4,5-dihalogenated 2'-deoxycytidine residues. The formation of the dihalogenated 2'-deoxycytidine in vivo was immunohistochemically demonstrated in the lung and liver nuclei of mice treated with lipopolysaccharides, an experimental inflammatory model. These results strongly suggest that phagocyte-derived oxidants, hypohalous acids, endogenously generate the halogenated DNA bases such as a novel dihalogenated 2'-deoxycytidine in vivo. Halogenation (chlorination and/or bromination) of DNA therefore may constitute one mechanism for oxidative DNA damage at the site of inflammation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号