首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of ovariectomy on indices of insulin resistance, hypertension, and cardiac energy metabolism in middle-aged spontaneously hypertensive rats (SHR).
Authors:A Swislocki  E S Burgie  K J Rodnick
Institution:Medical Service, VA Northern California Health Care System, Martinez, CA 94553, USA. arthur.swislocki@med.va.gov
Abstract:Insulin resistance is a risk factor for coronary heart disease. The protection of young women from coronary events is sharply reduced with menopause. To assess the impact of menopause on glucose tolerance, insulin resistance, body weight gain, heart size, and cardiac energy metabolism, we studied 28-week-old female SHR and Wistar-Kyoto (WKY) rats, who were either ovariectomized (SHR(OVX) and WKY(OVX)) or sham-operated (SHR(SHAM) and WKY(SHAM)). Animals underwent blood-pressure measurement and an oral glucose tolerance test (OGTT). Hearts were weighed and assayed for metabolic enzyme activities. Female SHR were 33 % lighter and hypertensive (+ 36 mmHg), with 33 % larger hearts (when corrected for body weight differences) compared to WKY. Although ovariectomized animals of both strains were heavier overall than their sham-operated counterparts, when heart weights were corrected for body weight, both OVX strains had lighter hearts than both SHAM strains. Glucose and insulin responses during OGTT were similar between the four groups; however, free fatty acid (FFA) responses were approximately 50 % greater in SHR than WKY, although less in SHR(OVX) than SHR(SHAM). WKY(OVX) demonstrated 8 % lower ventricular hexokinase activity than WKY(SHAM), which may reflect reduced cardiac glucose utilization. We also noted 16 % higher citrate synthase activity in WKY hearts. In conclusion, the insulin resistance characteristic of younger SHR is blunted in middle-aged female rats, although FFA responses remain elevated. Ovariectomy did not alter in vivo glucose tolerance in this group; however, sex hormones may be important in maintaining normal heart size and the potential for cardiac glucose metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号