首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium signal-dependent plasticity of neuronal excitability developed postnatally
Authors:Zhang Mei  Hung Fen S  Zhu Yan  Xie Zuoping  Wang Jin-Hui
Affiliation:Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
Abstract:Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole-cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250-ms interval) of five depolarization-pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long-term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2-bis(2-aminophenoxy)-ethane-N, N,N',N'-tetraacetic acid or 100 microM CaMKII(281-301) into the recording neurons prevented HFA-induced long-term enhancement of neuronal excitability. The infusion of 40 microM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA-induced long-term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium-dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号