首页 | 本学科首页   官方微博 | 高级检索  
     


Vitamin E Ameliorates the Decremental Effect of Paraquat on Cardiomyocyte Contractility in Rats
Authors:Mohamed Abdelmonem Fahim  Frank Christopher Howarth  Abderrahim Nemmar  Mohamed Anwar Qureshi  Mohamed Shafiullah  Petrilla Jayaprakash  Mohamed Yousif Hasan
Affiliation:1. Department of Physiology, Faculty of Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.; 2. Department of Pharmacology, Faculty of Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.; Temple University, United States of America,
Abstract:

Background

Exposure to pesticides and industrial toxins are implicated in cardiovascular disease. Paraquat (PAR) is a toxic chemical widely used as an herbicide in developing countries and described as a major suicide agent. The hypothesis tested here is that PAR induced myocardial dysfunction may be attributed to altered mechanisms of Ca2+ transport which are in turn possibly linked to oxidative stress. The mechanisms of PAR induced myocardial dysfunction and the impact of antioxidant protection was investigated in rat ventricular myocytes.

Methodology

Forty adult male Wistar rats were divided into 4 groups receiving the following daily intraperitoneal injections for 3 weeks: Group 1 PAR (10 mg/kg), Control Group 2 saline, Group 3 vitamin E (100 mg/kg) and Group 4 PAR (10 mg/kg) and vitamin E (100 mg/kg). Ventricular action potentials were measured in isolated perfused heart, shortening and intracellular Ca2+ in electrically stimulated ventricular myocytes by video edge detection and fluorescence photometry techniques, and superoxide dismutase (SOD) and catalase (CAT) levels in heart tissue.

Principal Findings

Spontaneous heart rate, resting cell length, time to peak (TPK) and time to half (THALF) relaxation of myocyte shortening were unaltered. Amplitude of shortening was significantly reduced in PAR treated rats (4.99±0.26%) and was normalized by vitamin E (7.46±0.44%) compared to controls (7.87±0.52%). PAR significantly increased myocytes resting intracellular Ca2+ whilst TPK and THALF decay and amplitude of the Ca2+ transient were unaltered. The fura-2–cell length trajectory during the relaxation of the twitch contraction was significantly altered in myocytes from PAR treated rats compared to controls suggesting altered myofilament sensitivity to Ca2+ as it was normalized by vitamin E treatment. A significant increase in SOD and CAT activities was observed in both PAR and vitamin E plus PAR groups.

Conclusions

PAR exposure compromised rats heart function and ameliorated by vitamin E treatment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号