首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Escherichia coli Peripheral Inner Membrane Proteome
Authors:Malvina Papanastasiou  Georgia Orfanoudaki  Marina Koukaki  Nikos Kountourakis  Marios Frantzeskos Sardis  Michalis Aivaliotis  Spyridoula Karamanou  Anastassios Economou
Institution:From the ‡Institute of Molecular Biology and Biotechnology-FORTH, Iraklio, Crete 711110, Greece; ;§Department of Biology-University of Crete, P.O. Box 1385, Iraklio, Crete 711110, Greece; ;¶Rega Institute, Katholieke Universiteit Leuven, Molecular Bacteriology Laboratory, Minderbroedersstraat 10, B-3000 Leuven, Belgium
Abstract:Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.An in-depth understanding of cellular proteomes requires knowledge of protein subcellular topology, assembly in macromolecular complexes, and modification and degradation of poplypeptides. Escherichia coli, a model organism for many such studies, is by far the best studied. The genomes of strain K-12 derivatives MG1655 and W3110 have been sequenced (1, 2), and >75% of their genes have been functionally assigned (3). Almost 90% of the K-12 proteome has been identified experimentally, and >73% of its proteins have known structures (4, 5). Moreover, the genomes of another 38 E. coli strains have been determined (see EcoliWiki for details).In E. coli, like in all Gram-negative bacteria, the bacterial cell envelope comprises the plasma or inner membrane and the outer membrane, which are separated by the periplasmic space. The inner membrane encloses the cytoplasm and is a dynamic substructure. It harbors a wide variety of proteins that function in vital cell processes such as the trafficking of ions, molecules, and macromolecules; cell division; environmental sensing; lipid, polysaccharide, and peptidoglycan biosynthesis; and metabolism. Inner membrane proteins either fully span the lipid bilayer using one or more hydrophobic transmembrane helices (integral) or are bound either directly to phospholipid components or via protein–protein interactions to the surface of the membrane (peripheral) (6) (Fig. 1A). Peripheral inner membrane proteins exist on either side of the membrane and may be recruited in membrane-associated complexes on demand (7). Peripheral inner membrane proteins on the cytoplasmic side constitute a sub-proteome of central importance because of their interaction with the cytoplasmic proteome, the nucleoid, and most of the cell''s metabolism. Thanks to their soluble character and the nature of their interactions with the membrane (mostly electrostatic and moderate hydrophobic interactions (7)), peripheral inner membrane proteins can be extracted using high salt concentrations, extreme pH levels, or chaotropes without disrupting the lipid bilayer (811). In contrast, the solubilization of integral proteins requires amphiphilic detergents in order to displace the membrane phospholipids and maintain them as soluble in aqueous solutions (12).Open in a separate windowFig. 1.Bioinformatics and experimental workflow for characterizing peripheral inner membrane proteins. A, schematic representation of the subcellular localization of the E. coli inner membrane peripherome. Protein topology assignment is based on the cellular compartment: A, cytoplasmic; B, integral inner membrane proteins; F1, peripheral inner membrane proteome; r, ribosome. B, schematic diagram for PIM protein annotation. 130 cytoplasmic and PIM E. coli K-12 proteins were downloaded from Uniprot (November 2010) (81) and EchoLOCATION (23). A set of bioinformatics tools was used to predict topologies and features of the unassigned and differently assigned proteins and to further validate existing protein annotations (see supplemental text). For the annotation of additional peripheral membrane proteins, the literature was extensively searched. Additional, other E. coli K-12 databases containing gene ontology annotations (84, 85) and protein homologies through BLAST (44) were employed. Homologues of curated E. coli K-12 proteins were identified in E. coli BL21(DE3) (supplemental Table S1A). C, preparation strategy for detecting the E. coli inner membrane peripherome via nanoLC-MS/MS. Inverted membrane vesicles (IMVs) were isolated and washed extensively with the indicated chemical agents to extract cytoplasmic and PIM proteins (“IMVs washed”), and then their surface was trypsinized (gray arrow). Following digestion, soluble peptides were analyzed via nanoLC-MS/MS. D, protein enrichment at different sample preparation conditions. Top: Relative percentage of proteins detected with the proteolysis approach. Proteins are classified here in three major categories: cytoplasmic (A), ribosomal (r), and peripheral (F1). The bar graphs indicate the percentage of proteins in each category relative to the proteins in other categories at a given sample preparation condition. Bottom: Heat maps showing relative quantities of individual proteins at different sample preparation conditions. Perseus (version 1.2.0.16), a part of the MaxQuant bioinformatics platform, was used for the construction of the heat map (86). A top-three label-free quantitative method was employed (27). Individual protein values across the various treatments are given in supplemental Table S3B.Unlike the cytoplasmic proteome of E. coli, which has been extensively characterized (13), its membrane sub-proteome is still poorly defined. Of 1133 predicted integral inner membrane proteins, only half were experimentally identified through proteomics approaches (14). These figures are constantly being re-evaluated,2 but most protein identifications appear robust. In contrast to integral inner membrane proteins, bioinformatics prediction of peripheral inner membrane proteins is currently not possible because they are not known to possess any specific features. Despite the occasional designation of partner proteins identified as peripheral in studies that target inner membrane complexes (1521), no systematic effort has been undertaken to analyze the peripheral inner membrane proteome.Here we have used a multi-pronged strategy employing bioinformatics, biochemistry, proteomics, and complexomics to systematically determine the peripheral inner membrane proteome of E. coli. We focus exclusively on the peripheral inner membrane proteome that faces the cytoplasm, referred to hereinafter as PIM,1 and do not analyze peripheral inner membrane proteins residing on the periplasm. Manually curated and re-evaluated topology of the E. coli K-12 proteome was extrapolated to the non-K-12 strain BL21(DE3) (95% proteome homology to K-12) (22). By combining various biochemical treatments, we determined experimentally that several cytoplasmic proteins are also novel PIM proteins, and many of them participate in protein complexes associated with the membrane. Collectively, we demonstrate that a significant, previously unsuspected percentage of the expressed polypeptides constitute the PIM proteome.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号