首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Sertraline and Fluoxetine on P-Glycoprotein at Barrier Sites: In Vivo and In Vitro Approaches
Authors:Amita Kapoor  Majid Iqbal  Sophie Petropoulos  Hay Lam Ho  William Gibb  Stephen G. Matthews
Affiliation:1. Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.; 2. Departments of Physiology, Obstetrics and Gynecology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.; 3. University of Ottawa, Department of Obstetrics and Gynecology, Cellular and Molecular Medicine, Ottawa, Ontario, Canada.; Western University of Health Sciences, United States of America,
Abstract:

Background and Purpose

Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp) in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI) can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo.

Experimental Approach

The P-gp substrate, tritiated digoxin ([3H] digoxin), was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects.

Key Results

In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo.

Conclusions and Implications

Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号