首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Weak-Periodic Stochastic Resonance in a Parallel Array of Static Nonlinearities
Authors:Yumei Ma  Fabing Duan  Fran?ois Chapeau-Blondeau  Derek Abbott
Institution:1. College of Automation Engineering, Qingdao University, Qingdao, People’s Republic of China.; 2. Laboratoire d’Ingénierie des Systèmes Automatisés, Université d’Angers, Angers, France.; 3. Centre for Biomedical Engineering and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, Southern Australia, Australia.; University of Maribor, Slovenia,
Abstract:This paper studies the output-input signal-to-noise ratio (SNR) gain of an uncoupled parallel array of static, yet arbitrary, nonlinear elements for transmitting a weak periodic signal in additive white noise. In the small-signal limit, an explicit expression for the SNR gain is derived. It serves to prove that the SNR gain is always a monotonically increasing function of the array size for any given nonlinearity and noisy environment. It also determines the SNR gain maximized by the locally optimal nonlinearity as the upper bound of the SNR gain achieved by an array of static nonlinear elements. With locally optimal nonlinearity, it is demonstrated that stochastic resonance cannot occur, i.e. adding internal noise into the array never improves the SNR gain. However, in an array of suboptimal but easily implemented threshold nonlinearities, we show the feasibility of situations where stochastic resonance occurs, and also the possibility of the SNR gain exceeding unity for a wide range of input noise distributions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号