首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenetic conservatism of functional traits in microorganisms
Authors:Adam C Martiny  Kathleen Treseder  Gordon Pusch
Institution:1.Department of Earth System Science, University of California, Irvine, CA, USA;2.Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA;3.Argonne National Laboratory, Argonne, IL, USA
Abstract:A central question in biology is how biodiversity influences ecosystem functioning. Underlying this is the relationship between organismal phylogeny and the presence of specific functional traits. The relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage between phylogeny and the presence of specific functional traits. To identify the phylogenetic conservation of specific traits in microorganisms, we developed a new phylogenetic metric—consenTRAIT—to estimate the clade depth where organisms share a trait. We then analyzed the distribution of 89 functional traits across a broad range of Bacteria and Archaea using genotypic and phenotypic data. A total of 93% of the traits were significantly non-randomly distributed, which suggested that vertical inheritance was generally important for the phylogenetic dispersion of functional traits in microorganisms. Further, traits in microbes were associated with a continuum of trait depths (τD), ranging from a few deep to many shallow clades (average τD: 0.101–0.0011 rRNA sequence dissimilarity). Next, we demonstrated that the dispersion and the depth of clades that contain a trait is correlated with the trait''s complexity. Specifically, complex traits encoded by many genes like photosynthesis and methanogenesis were found in a few deep clusters, whereas the ability to use simple carbon substrates was highly phylogenetically dispersed. On the basis of these results, we propose a framework for predicting the phylogenetic conservatism of functional traits depending on the complexity of the trait. This framework enables predicting how variation in microbial composition may affect microbially-mediated ecosystem processes as well as linking phylogenetic and trait-based patterns of biogeography.
Keywords:Phylogenomics  SEED  traits  lateral gene transfer  Biolog  consenTRAIT
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号