首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiplexed Quantitation of Endogenous Proteins in Dried Blood Spots by Multiple Reaction Monitoring - Mass Spectrometry
Authors:Andrew G Chambers  Andrew J Percy  Juncong Yang  Alexander G Camenzind  Christoph H Borchers
Institution:From the ‡University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101, 4464 Markham St., Victoria, BC V8Z 7X8, Canada.;§Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
Abstract:Dried blood spot (DBS) sampling, coupled with multiple reaction monitoring mass spectrometry (MRM-MS), is a well-established approach for quantifying a wide range of small molecule biomarkers and drugs. This sampling procedure is simpler and less-invasive than those required for traditional plasma or serum samples enabling collection by minimally trained personnel. Many analytes are stable in the DBS format without refrigeration, which reduces the cost and logistical challenges of sample collection in remote locations. These advantages make DBS sample collection desirable for advancing personalized medicine through population-wide biomarker screening. Here we expand this technology by demonstrating the first multiplexed method for the quantitation of endogenous proteins in DBS samples. A panel of 60 abundant proteins in human blood was targeted by monitoring proteotypic tryptic peptides and their stable isotope-labeled analogs by MRM. Linear calibration curves were obtained for 40 of the 65 peptide targets demonstrating multiple proteins can be quantitatively extracted from DBS collection cards. The method was also highly reproducible with a coefficient of variation of <15% for all 40 peptides. Overall, this assay quantified 37 proteins spanning a range of more than four orders of magnitude in concentration within a single 25 min LC/MRM-MS analysis. The protein abundances of the 33 proteins quantified in matching DBS and whole blood samples showed an excellent correlation, with a slope of 0.96 and an R2 value of 0.97. Furthermore, the measured concentrations for 80% of the proteins were stable for at least 10 days when stored at −20 °C, 4 °C and 37 °C. This work represents an important first step in evaluating the integration of DBS sampling with highly-multiplexed MRM for quantitation of endogenous proteins.Dried Blood Spot (DBS)1 samples have many advantages over blood serum or plasma and are the preferred clinical sample for newborn screening for metabolic diseases (1, 2). These samples are collected by pricking a newborn''s heel and spotting a drop of blood onto specially designed filter paper collection cards. Samples are then dried under ambient conditions and are usually stored with desiccant at room temperature until analysis. This sampling procedure is simpler and less invasive then intravenous blood draws, which require a trained phlebotomist. Not surprisingly, the majority of adult patients prefer the small lancet used in finger-prick blood sampling methods to the larger needles used in intravenous blood draws (3, 4). Unlike plasma or serum samples, which consume ≥250 μl of blood and must be centrifuged within an hour of collection, DBS samples can be prepared using a volume of only 10 μl, and do not require any specialized equipment at the collection site (5). The simplicity and reduced safety risks associated with DBS sampling enables collection by minimally trained staff or by the patients themselves. In addition, many analytes are stable in the DBS format at room temperature, reducing sample transportation and storage costs, as well as the impact on the environment. Finally, DBS samples are safer to transport and are considered exempt from dangerous goods regulations (6, 7). These advantages make DBS sampling very attractive for advancing personalized medicine and population-based biomarker research (8).Numerous biomolecular targets covering genomics, metabolomics, and proteomics applications have been quantified in DBS samples using a wide array of analytical techniques (9). The most common clinical application of DBS sampling is screening newborns for metabolomics disorders by targeting small molecule biomarkers. Early screening programs relied on bacterial inhibition assays and later immunoassays, both of which required a different assay for each target of interest (2). However, the time and cost required to perform each assay independently has limited the number of diseases that could be screened nationwide to only a handful. In addition, a single biomarker often lacked the specificity to produce a definitive diagnosis, requiring extensive secondary testing. Hemoglobin is the only protein that is commonly targeted in DBS samples, and primary screening is accomplished by high-performance liquid chromatography (HPLC) or isoelectric focusing (IEF) methods (2). Similar to small-molecule screening methods, these approaches are low-throughput and are not amendable to multiplexing with additional protein targets. In newborn screening programs, these challenges associated with small molecule analysis were overcome with the introduction of multiple reaction monitoring mass spectrometry (MRM-MS) into the clinical laboratories (1, 10). The specificity of MRM enables hundreds of analytes to be monitored during a single experiment to facilitate the development of highly multiplexed assays. The addition of stable isotope-labeled internal standards (SIS) enables the acquisition of highly reproducible results across a variety of instrumentation at different institutions. It is now common for 20–30 small molecule targets including amino acids, fatty acid acylcarnitines, and organic acid acylcarnitines to be analyzed by flow injection MRM-MS, at a cost of $10–20 USD per patient sample (11). Expansion of the screening panel to include additional small-molecule biomarkers on an existing platform may cost less than $1 each. In addition to newborn screening, DBS sampling combined with MS is also gaining acceptance in small-molecule drug development (12, 13). Here the collection of smaller blood volumes allows serial sampling from mice reducing the total number of animals required to generate preclinical toxicology and pharmacokinetic data (5).Despite the successful use of DBS samples in MS-based experiments for small molecule analysis, there have been few reports of using this technology for protein targets (13). Daniel and coworkers reported a screening method for identifying β-thalassemia using the well-known biomarker HbA2, a hemoglobin variant composed of two alpha- and two delta-globin subunits (14). Proteins were extracted in an aqueous solution, digested with trypsin in 30 min and infused for MRM-MS analysis. Multiple hemoglobin peptides were targeted to measure the abundance of the delta-globin chain, using peptides from the beta-globin chain as an internal standard. This ratio correlated well with the abundance of intact HbA2 as determined by a well-established HPLC method. The shorter acquisition time and the increased specificity of the MS-based method showed promise for improving population-wide screening. Boemer et al. used a similar flow injection MRM-MS strategy to screen newborns for hemoglobin variants associated with sickle cell disease (15). They analyzed more than 2000 DBS samples by targeting tryptic peptides that were unique to four different beta-globin mutations and compared their results with a standard IEF method that measured the intact proteins obtained from corresponding whole blood samples. Their flow injection MRM approach was able to identify the correct phenotype for all targeted variants. Recently, deWilde et al. reported a method for screening newborn DBS samples for ceruloplasmin, a protein linked to Wilson''s disease (16). Their method combined SIS peptides with LC/MRM-MS and produced results similar to those from an immunoassay for the analysis of seven patient samples. The monitoring of a therapeutic protein in rat blood was demonstrated with Kehler et al. to evaluate the suitability of this approach for supporting preclinical trials (17). Finally, a multiplexed approach was presented by Sleczka et al. for the simultaneous quantitation of two therapeutic proteins in spiked DBS samples collected from several animal models (18).In all previous methods, only one to two proteins were targeted in DBS samples and therefore the true multiplexing capabilities of MRM were not realized. MRM-based methods using SIS peptides have already proven proficient at highly multiplexed quantitation of proteins in plasma and serum samples (1921). Our current work demonstrates the potential for integrating DBS sampling with LC/MRM-MS for highly multiplexed quantitation of endogenous proteins. Many of the 60 proteins that we have targeted have been cleared or approved by FDA, and are already being analyzed one at a time in clinical laboratories. The assay developed in this study includes a highly reproducible method for extracting multiple proteins from DBS samples followed by trypsin digestion and surrogate peptides, along with their SIS analogs, were analyzed by a standard-flow LC/MRM-MS platform that has previously been shown to give accurate, sensitive, and robust analysis of proteotypic peptides in human plasma (21, 22). The quantitative results from whole blood and the corresponding DBS samples were compared, and the integrity of DBS samples stored under various temperatures has been evaluated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号