首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae)
Authors:Clark C M  Wentworth T R  O'Malley D M
Institution:Department of Forestry, Forest Biotechnology Group, Box 7247, North Carolina State University, Raleigh, North Carolina 27695 USA;
Abstract:Development of conservation strategies for Fraser fir (Abies fraseri) in the southern Appalachian Mountains depends in part on recognition of the extent to which Fraser fir is genetically distinct from the closely related balsam (A. balsamea) and intermediate (A. balsamea var. phanerolepis) fir. These sibling species have exhibited intergrading, clinal variation in morphological, chemical, and genetic characteristics in prior research. Chloroplast microsatellite markers were polymerase chain reaction amplified from genomic DNA samples of 78 individuals representing the geographic ranges of Fraser, balsam, and intermediate fir. Gene diversity levels at two loci ranged among taxa from 0.65 to 0.84. Allele frequencies demonstrated significant differentiation among taxa, with R(ST) values of 0.36 and 0.10. Haplotype diversity and D(SH) were highest for balsam fir and lowest for intermediate fir. A haplotype network analysis based on allele size distribution for the two loci revealed two distinct clusters of haplotypes and population-specific haplotypes. Ninety-two percent of the haplotypes in one cluster were from balsam fir and intermediate fir, and 84% of the haplotypes in the other cluster were from Fraser fir and intermediate fir. The genetic differentiation of chloroplast DNA markers provides justification for the recognition of Fraser fir as a distinct Management Unit (MU) for conservation purposes, regardless of its taxonomic classification.
Keywords:Abies  chloroplast DNA  chloroplast haplotypes  chloroplast microsatellites  chloroplast SSRs  conservation  Fraser fir  Pinaceae
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号