首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor
Authors:Ishima Rieko  Torchia Dennis A  Louis John M
Institution:Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Abstract:An experimental protocol for folding the mature human immunodeficiency virus-1 (HIV-1) protease is presented that facilitates NMR studies at a low protein concentration of approximately 20 micoM. Under these conditions, NMR spectra show that the mature protease lacking its terminal beta-sheet residues 1-4 and 96-99 (PR(5-95)) exhibits a stable monomer fold spanning the region 10-90 that is similar to that of the single subunit of the wild-type dimer and the dimer bearing a D25N mutation (PR(D25N)). Urea-induced unfolding monitored both by changes in (1)H-(15)N heteronuclear single quantum correlation spectra and by protein fluorescence indicates that although PR(5-95) monomer displays a transition profile similar to that of the PR(D25N) dimer (50% unfolded (U(50)) = approximately 1.9 M), extending the protease with 4 residues (SFNF) of its N-terminally flanking sequence in the Gag-Pol precursor ((SFNF)PR(D25N)) decreases the stability of the fold (U(50) = approximately 1.5 M). Assigned backbone chemical shifts were used to elucidate differences in the stability of the PR(T26A) (U(50) = 2.5 M) and (SFNF)PR(D25N) monomers and compared with PR(D25N/T26A) monomer. Discernible differences in the backbone chemical shifts were observed for N-terminal protease residues 3-6 of (SFNF)PR(D25N) that may relate to the increase in the equilibrium dissociation constant (K(d)) and the very low catalytic activity of the protease prior to its autoprocessing at its N terminus from the Gag-Pol precursor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号