首页 | 本学科首页   官方微博 | 高级检索  
     


A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae
Authors:Marrakchi Hedia  Choi Keum-Hwa  Rock Charles O
Affiliation:Department of Infectious Diseases, Protein Science Division, St Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA.
Abstract:The anaerobic pathway for unsaturated fatty acid synthesis was established in the 1960s in Escherichia coli. The double bond is introduced into the growing acyl chain by FabA, an enzyme capable of both the dehydration of beta-hydroxydecanoyl-acyl carrier protein (ACP) to trans-2-decenoyl-ACP, and the isomerization of trans-2 to cis-3-decenoyl-ACP. However, there are a number of anaerobic bacteria whose genomes do not contain a fabA homolog, although these organisms nonetheless produce unsaturated fatty acids. We cloned and biochemically characterized a new enzyme in type II fatty acid synthesis from Streptococcus pneumoniae that carries out the isomerization of trans-2-decenoyl-ACP to cis-3-decenoyl-ACP, but is not capable of catalyzing the dehydration of beta-hydroxy intermediates. This tetrameric enzyme, designated FabM, has no similarity to FabA, but rather is a member of the hydratase/isomerase superfamily. Thus, the branch point in the biosynthesis of unsaturated fatty acids in S. pneumoniae occurs following the formation of trans-2-decenoyl-ACP, in contrast to E. coli where the branch point takes place after the formation of beta-hydroxydecanoyl-ACP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号