首页 | 本学科首页   官方微博 | 高级检索  
     


Protonation reactions in relation to the coupling mechanism of bovine cytochrome c oxidase
Authors:Rich P R  Breton J  Jünemann S  Heathcote P
Affiliation:The Glynn Laboratory of Bioenergetics, Department of Biology, University College of London, UK. prr@ucl.ac.uk
Abstract:Identification of the locations of protonatable sites in cytochrome c oxidase that are influenced by reactions in the binuclear centre is critical to assessment of proposed coupling mechanisms, and to controversies on where the pumping steps occur. One such protonation site is that which governs interconversion of the isoelectronic 607 nm 'P(M)' and 580 nm 'F' forms of the two-electron-reduced oxygen intermediate. Low pH favours protonation of a site that is close to an electron paramagnetic resonance (EPR)-silent radical species in P(M), and this induces a partial electronic redistribution to form an EPR-detectable tryptophan radical in F. A further protonatable group that must be close to the binuclear centre has been detected in bacterial oxidases by Fourier transform infrared spectroscopy from pH-dependent changes in the haem-bound CO vibration frequency at low temperatures. However, in bovine cytochrome c oxidase under similar conditions of measurement, haem-bound CO remains predominantly in a single 1963 cm(-1) form between pH 6.5 and 8.5, indicating that this group is not present. Lack of pH dependence extends to the protein region of the CO photolysis spectra and suggests that both the reduced and the reduced/CO states do not have titratable groups that affect the binuclear centre strongly in the pH range 6.5-8.5. This includes the conserved glutamic acid residue E242 whose pK appears to be above 8.5 even in the fully oxidised enzyme. The results are discussed in relation to recent ideas on coupling mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号