DNA sequence analysis, gene product identification, and localization of flagellar motor components of Escherichia coli. |
| |
Authors: | J Malakooti Y Komeda P Matsumura |
| |
Affiliation: | Laboratory of Cell, Molecular and Developmental Biology, University of Illinois, Chicago 60680. |
| |
Abstract: | The Escherichia coli operon designated flaA contains seven flagellar genes; among them are two switch protein genes whose products are believed to interface with the motility and chemotaxis machinery of the cell. Complementation analysis using several plasmids carrying different portions of the flaA operon and analysis of expression of these plasmids in minicells allowed the identification of two flagellar gene products. The MotD (now called FliN) protein, a flagellar switch protein, was determined to have an apparent molecular weight of 16,000, and the FlaAI (FliL) protein, encoded by a previously unidentified gene, had an apparent molecular weight of 17,000. DNA sequence analysis of the motD gene revealed an open reading frame of 414 base pairs. There were two possible initiation codons (ATG) for motD translation, the first of which overlapped with the termination codon of the upstream gene, flaAII (fliN). The wild-type flaAI gene on the chromosome was replaced with a flaAI gene mutated in vitro. Loss of the flaAI gene product resulted in a nonmotile and nonflagellated phenotype. The subcellular location for both the MotD and FlaAI proteins was determined; the FlaAI protein partitioned exclusively in the insoluble fraction of a whole minicell sonic extract, whereas the MotD protein remained in both the soluble and insoluble fractions. In addition, we subcloned a 2.2-kilobase-pair DNA fragment capable of complementing the remaining four genes of the flaA operon (flbD [fliO], flaR [fliP], flaQ [fliQ], and flaP [fliR]). |
| |
Keywords: | |
|
|