首页 | 本学科首页   官方微博 | 高级检索  
     


Generation of reactive oxygen species is an early event in dolichyl phosphate-induced apoptosis
Authors:Yokoyama Yoshiko  Nohara Kazunari  Okubo Tomoko  Kano Itsu  Akagawa Keisuke  Kano Kazutaka
Affiliation:Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
Abstract:The mechanism of induction of apoptosis by dolichyl phosphate (Dol-P) was investigated in U937 cells. Studies using isolated mitochondria revealed that the respiratory complex II activity was almost completely inhibited by 20 microg/ml of Dol-P but not by the same concentration of dolichol. Activities of complex I and III were also inhibited by Dol-P, but nearly 50% of activity still remained at 20 microg/ml. Dol-P induced release of cytochrome-c from the isolated mitochondria. Fluorometric microtiter plate assay revealed that generation of reactive oxygen species (ROS) increased in a time-dependent manner. Flow cytometric analysis also indicated that Dol-P caused loss of mitochondrial membrane potential (Deltapsi(m)) and increased ROS generation. The addition of the antioxidant pyrrolidine dithiocarbamate (PDTC) significantly inhibited Dol-P-induced ROS generation and activation of caspase-3. A specific inhibitor of respiratory complex II, thenoyltrifluoroacetone (TTFA), increased ROS generation, potentially mimicking the consequence of inhibition of electron flow at complex II by Dol-P in U937 cells. Electron microscopy revealed that mitochondria became swollen and spherical in shape by the treatment with Dol-P. Neither the tyrosine kinase inhibitor k252a nor mitogen activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitors PD98059 and U0126 inhibited the Dol-P-induced apoptosis. Together, these results suggest that the direct disruption of mitochondrial respiratory complexes and the consequent ROS generation play a critical role in the initiation of Dol-P-induced apoptosis.
Keywords:dolichyl phosphate  apoptosis  reactive oxygen species  electron transport chain  pyrrolidine dithiocarbamate  caspase‐3  mitochondria
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号