首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hepcidin increases intracellular Ca2+ of osteoblast hFOB1.19 through L-type Ca2+ channels
Authors:Xu Youjia  Li Guangfei  Du Bencai  Zhang Peng  Xiao Li  Sirois Pierre  Li Kai
Institution:Molecular Medicine Center, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China. xuyoujia@medmail.com.cn
Abstract:Hepcidin is a key player in the regulation of iron homeostasis. Several pathological conditions associated with iron overload are attributed to the depressed expression of hepcidin and are often associated with bone diseases including osteoporosis. Hepcidin was suggested to have anti-osteoporosis effects by preventing iron overload. We recently observed that hepcidin could increase intracellular calcium concentration in cultured osteoblast cells. The present study was designed to elucidate the source of the increased intracellular calcium following hepcidin activation. Cultured hFOB1.19 cells were used to test whether there was a dose dependent effect of hepcidin on increasing intracellular calcium. After finding the optimal concentration in increasing intracellular calcium, Cultured hFOB1.19 cells were then divided into three groups: (1) control group, (2) and (3) groups pretreated with either nimodipine (2 × 10(-5)mol/L) or EDTA (2 × 10(-3)mol/L) for 10 min before incubation with hepcidin (100 nmol/L). All cells were stimulated with hepcidin for 60 min and then stained with fluo-3/AM for 40 min before the intracellular calcium was observed using flow cytometry (FCM). As compared with controls, hepcidin treatment significantly increased intracellular calcium concentration. This effect was blocked by nimodipine and EDTA pretreatments which suggested that hepcidin-mediated calcium inflow was mainly through L-type Ca(2+) channels and that the release of intracellular calcium store was not significant. Hepcidin increases of intracellular calcium may be related to its anti-osteoporosis effect but this hypothesis needs further investigation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号