首页 | 本学科首页   官方微博 | 高级检索  
     


Sodium-gradient-stimulated transport of l-alanine by plasma-membrane vesicles isolated from liver parenchymal cells of fed and starved rats. Crucial role of the adrenal glucocorticoids
Authors:Dennis C. Quinlan   C. Gordon Todderud   Darshan S. Kelley   Rolf F. Kletzien
Affiliation:Department of Biology at West Virginia University, Morgantown, WV 26505, U.S.A.;Department of Biochemistry at the West Virginia University School of Medicine, Morgantown, WV 26505, U.S.A.
Abstract:The ability of liver efficiently to take up amino acids, particularly l-alanine, during starvation was studied in a cell-free system by isolating plasma-membrane vesicles in a transport-competent state from rat liver parenchymal cells. These membrane vesicles have the capacity to accumulate l-alanine against an apparent concentration gradient when exposed to an artificial and transient transmembrane Na+ gradient (extravesicular Na+ concentration greater than inside). The rate of accumulation of l-alanine is dependent on the plasma-membrane vesicle concentration, and the steady-state concentration attained is inversely related to the osmolarity of the medium. The Na+-mediated stimulation is not exhibited if the membrane vesicles are pre-equilibrated with NaCl, if K+ or Li+ are substituted for Na+, or if SO42− replaces Cl as the counterion. The apparent active transport of l-alanine into the membrane vesicles appears to occur by an electrogenic mechanism: (1) the use of NaSCN significantly heightens the early concentrative phase of transport when compared with the effect of NaCl; (2) an enhanced active transport is also observed when a valinomycin-induced K+ efflux occurs concomitant with Na+ and l-alanine influx. Plasma-membrane vesicles isolated from liver parenchymal cells of a 24 h-starved rat exhibit an initial l-alanine transport rate that is 3–4 times that for membrane vesicles derived from a fed animal. The increased rate of l-alanine transport by plasma-membrane vesicles from starved animals can be obliterated by adrenalectomy and restored by administration of glucocorticoid. These results establish that stimulation of the gluconeogenic pathway by starvation involves a plasma-membrane-localized change affecting l-alanine transport which is regulated in part by the glucocorticoid hormones.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号