首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Ku70 in deubiquitination of Mcl-1 and suppression of apoptosis
Authors:B Wang  M Xie  R Li  T K Owonikoko  S S Ramalingam  F R Khuri  W J Curran  Y Wang  X Deng
Institution:1.Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA;2.Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
Abstract:Mcl-1 is a unique antiapoptotic Bcl2 family member with a short half-life due to its rapid turnover through ubiquitination. We discovered that Ku70, a DNA double-strand break repair protein, functions as a deubiquitinase to stabilize Mcl-1. Ku70 knockout in mouse embryonic fibroblast (MEF) cells or depletion from human lung cancer H1299 cells leads to the accumulation of polyubiquitinated Mcl-1 and a reduction in its half-life and protein expression. Conversely, expression of exogenous Ku70 in Ku70−/− MEF cells restores Mcl-1 expression. Subcellular fractionation indicates that Ku70 extensively colocalizes with Mcl-1 in mitochondria, endoplasmic reticulum and nucleus in H1299 cells. Ku70 directly interacts with Mcl-1 via its C terminus (that is, aa 536–609), which is required and sufficient for deubiquitination and stabilization of Mcl-1, leading to suppression of apoptosis. Purified Ku70 protein directly deubiquitinates Mcl-1 by removing K48-linked polyubiquitin chains. Ku70 knockdown not only promotes Mcl-1 turnover but also enhances antitumor efficacy of the BH3-mimetic ABT-737 in human lung cancer xenografts. These findings identify Ku70 as a novel Mcl-1 deubiquitinase that could be a potential target for cancer therapy by manipulating Mcl-1 deubiquitination.Mcl-1 is an antiapoptotic molecule that is overexpressed in various types of cancers, including lung cancer,1 leukemia,2 lymphoma,3 hepatocellular carcinoma4 and so on. In addition to its antiapoptotic function, Mcl-1 is also an oncoprotein that promotes the development of cancer.5 In contrast to other Bcl2 family members such as Bcl2 and Bcl-XL, Mcl-1 is unique in its short half-life (30 min–3 h) and short-term prosurvival function, which probably relates to the presence of a long proline-, glutamic acid-, serine- and threonine-rich (PEST) region upstream of the Bcl2 homology (BH) domain.1 The mechanism(s) that stabilizes the Mcl-1 protein are critical for its long-term survival function. Mcl-1 protein can be phosphorylated at multiple sites that distinctly regulate Mcl-1 protein turnover. For example, extracellular signal-regulated kinase 1/2-mediated T163 site phosphorylation enhances the half-life and antiapoptotic function of Mcl-1.1, 6 In contrast, S159 phosphorylation by GSK-3β facilitates Mcl-1 ubiquitination and degradation to reduce its survival activity.7Ubiquitination and deubiquitination are two reversible processes that can control protein stability. E3 ligases and deubiquitinases (deubiquitinating enzymes (DUBs)) are two groups of regulatory enzymes that orchestrate the ubiquitination levels of target proteins in eukaryotic cells.8 Recently, Mule and FBW7 have been identified as Mcl-1 ubiquitin E3 ligases that can directly induce polyubiquitination and degradation of Mcl-1.9, 10 Inversely, USP9X has been demonstrated as the Mcl-1 deubiquitinase that removes the Lys 48-linked polyubiquitin chains that normally mark Mcl-1 for proteasomal degradation, leading to stabilization of Mcl-1.3 Therefore, the stability of Mcl-1 in cells is tightly regulated by its E3 ligases and deubiquitinase, which is dependent on Mcl-1 phosphorylation status.3, 11Ku70 is a protein that binds to DNA double-strand break (DSB) ends and is required for the non-homologous end-joining pathway of DSB repair.12, 13, 14, 15 The Ku70 protein consists of three structural domains, including the N-terminal, central (that is, DNA binding) and C-terminal domains.16, 17 Ku70 usually heterodimerizes with Ku86, which forms a functional complex for DSB repair. By forming a bridge between the broken DNA ends, the Ku70/Ku86 heterodimer acts to structurally support and align the DNA ends, to protect them from degradation and to prevent promiscuous binding to unbroken DNA. Ku70/Ku86 effectively aligns the DNA, while still allowing access of polymerases, nucleases and ligases to the broken DNA ends to promote end joining.18 In some cases, a fourth domain is present at the C terminus of Ku86, which binds to the DNA-dependent protein kinase catalytic subunit.19 Importantly, Ku70 also regulates apoptosis independent of its DSB repair activity. For example, a recent report revealed that Ku70 regulates the proapoptotic function of Bax by sequestering Bax from the mitochondria and mediating Bax deubiquitylation.20 Here we discovered that Ku70 functions as a novel Mcl-1 deubiquitinase that directly removes polyubiquitin chains from Mcl-1 protein, leading to reduced Mcl-1 ubiquitination/degradation, enhanced stability and suppression of apoptosis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号