首页 | 本学科首页   官方微博 | 高级检索  
     


Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean
Authors:Marco H Bello  Samira M Moghaddam  Mark Massoudi  Phillip E McClean  Perry B Cregan  Phillip N Miklas
Affiliation:.Vegetable and Forage Crops Research Unit, USDA, Agricultural Research Service, Prosser, WA 99350 USA ;.Department of Plant Sciences and Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND 58108 USA ;.Ag-Biotech Inc, 2191 San Juan Hollister Rd, San Juan Bautista, CA 95045 USA ;.Soybean Genomics and Improvement Laboratory, USDA, Agricultural Research Service, Beltsville, MD 20705 USA
Abstract:

Background

Common bean was one of the first crops that benefited from the development and utilization of molecular marker-assisted selection (MAS) for major disease resistance genes. Efficiency of MAS for breeding common bean is still hampered, however, due to the dominance, linkage phase, and loose linkage of previously developed markers. Here we applied in silico bulked segregant analysis (BSA) to the BeanCAP diversity panel, composed of over 500 lines and genotyped with the BARCBEAN_3 6K SNP BeadChip, to develop codominant and tightly linked markers to the I gene controlling resistance to Bean common mosaic virus (BCMV).

Results

We physically mapped the genomic region underlying the I gene. This locus, in the distal arm of chromosome Pv02, contains seven putative NBS-LRR-type disease resistance genes. Two contrasting bulks, containing BCMV host differentials and ten BeanCAP lines with known disease reaction to BCMV, were subjected to in silico BSA for targeting the I gene and flanking sequences. Two distinct haplotypes, containing a cluster of six single nucleotide polymorphisms (SNP), were associated with resistance or susceptibility to BCMV. One-hundred and twenty-two lines, including 115 of the BeanCAP panel, were screened for BCMV resistance in the greenhouse, and all of the resistant or susceptible plants displayed distinct SNP haplotypes as those found in the two bulks. The resistant/susceptible haplotypes were validated in 98 recombinant inbred lines segregating for BCMV resistance. The closest SNP (~25-32 kb) to the distal NBS-LRR gene model for the I gene locus was targeted for conversion to codominant KASP (Kompetitive Allele Specific PCR) and CAPS (Cleaved Amplified Polymorphic Sequence) markers. Both marker systems accurately predicted the disease reaction to BCMV conferred by the I gene in all screened lines of this study.

Conclusions

We demonstrated the utility of the in silico BSA approach using genetically diverse germplasm, genotyped with a high-density SNP chip array, to discover SNP variation at a specific targeted genomic region. In common bean, many disease resistance genes are mapped and their physical genomic position can now be determined, thus the application of this approach will facilitate further development of codominant and tightly linked markers for use in MAS.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-903) contains supplementary material, which is available to authorized users.
Keywords:Marker-assisted selection   Molecular breeding   KASP   CAPS   Disease resistance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号