首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Derivatization of F2-isoprostanes with 1-pyrenyldiazomethane and their subsequent determination by fluorescence high-performance liquid chromatography
Authors:Ritov Vladimir B  Kelley David E  Kagan Valerian E
Institution:Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, 1000, Switzerland.
Abstract:A novel, sensitive, and specific method is presented for the quantification of endogenous 3-nitrotyrosine in rat plasma based on isotope dilution liquid chromatography-electrospray ionization tandem mass spectrometry, using 3-nitro-2,5,6-d(3)-l-tyrosine as an internal standard. The extraction and cleanup method entails three major steps: protein precipitation, solid-phase extraction with an aminopropyl cartridge, followed by derivatization of 3-nitrotyrosine to the corresponding butyl ester. The analysis of the stable butyl ester derivative circumvented matrix interferences, which were encountered on the analysis of the nonderivatized analyte in plasma, and thus significantly improved sensitivity. The mass spectral acquisition of 3-nitrotyrosine butyl ester was done in the positive ion mode using selected reaction monitoring of two specific transitions. The response was linear over the concentration range 1.4-28.5 nM, and the recoveries of spiked 3-nitrotyrosine in rat plasma exceeded 75%. The detection and quantification limits of 3-nitrotyrosine in rat plasma (165 microL equivalent injected) approached 0.43 and 1.4 nM (0.07 and 0.23 pmol, on column), respectively. This study also addresses the potential artifactual formation of 3-nitrotyrosine, which may lead to an overestimation of the background levels of the biomarker. Solid-phase extraction of 3-nitrotyrosine was required prior to esterification to avoid artifactual nitration of tyrosine. In this context, analysis of eight rat plasma samples showed quantifiable levels in only four of the samples of the order of 1.4-1.5 nM.
Keywords:F2-Isoprostanes  Prostaglandins  Fluorescent derivatization  HPLC  1-Pyrenyldiazomethane  Oxidative stress
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号