首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulating structural and thermodynamic properties of carcinogen-damaged DNA
Authors:Yan Shixiang  Wu Min  Patel Dinshaw J  Geacintov Nicholas E  Broyde Suse
Institution:Department of Chemistry, New York University, New York, NY 10003, USA.
Abstract:A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzoa]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.
Keywords:(+)-anti-BPDE  (+)-(7R  8S  9S  10R)-7  8-dihydroxy-9  10-epoxy-7  8  9  10-tetrahydrobenzo[a]pyrene  (−)-anti-BPDE  (−)-(7S  8R  9R  10S)-7  8-dihydroxy-9  10-epoxy-7  8  9  10-tetrahydrobenzo[a]-pyrene  BP  benzo[a]pyrene  BPDE  benzo[a]pyrene diol epoxide  DNA  deoxyribonucleic acid  MD  molecular dynamics  MM-PBSA  molecular mechanics Poisson-Boltzmann surface area  NER  nucleotide excision repair  NMR  nuclear magnetic resonance  NOE  nuclear Overhauser effect  PME  particle mesh Ewald  RESP  restrained electrostatic potential ?tting  RMSD  root-mean-square deviation  SASA  solvent-accessible surface area
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号