首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Direct electrical detection of hybridization at DNA-modified silicon surfaces
Authors:Cai Wei  Peck John R  van der Weide Daniel W  Hamers Robert J
Institution:Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
Abstract:Electrochemical impedance spectroscopy was used to investigate the changes in interfacial electrical properties that arise when DNA-modified Si(111) surfaces are exposed to solution-phase DNA oligonucleotides with complementary and non-complementary sequences. The n- and p-type silicon(111) samples were covalently linked to DNA molecules via direct Si?C linkages without any intervening oxide layer. Exposure to solutions containing DNA oligonucleotides with the complementary sequence produced significant changes in both real and imaginary components of the electrical impedance, while exposure to DNA with non-complementary sequences generated negligible responses. These changes in electrical properties were corroborated with fluorescence measurements and were reproduced in multiple hybridization-denaturation cycles. The ability to detect DNA hybridization is strongly frequency-dependent. Modeling of the response and comparison of results on different silicon bulk doping shows that the sensitivity to DNA hybridization arises from DNA-induced changes in the resistance of the silicon substrate and the resistance of the molecular layers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号