首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The genetic conditions in heterozygous and homozygous populations ofDrosophila I. The fate of alien chromosomes
Authors:D Sperlich  A Karlik
Institution:(1) Institute for General Biology, University of Vienna, Austria
Abstract:In experimental populations ofDrosophila melanogaster lethal chromosomes with dominant markers and inversions were introduced and the frequency changes of the markers studied during a period of several generations. The base populations of the various experiments differed from each other with respect to their degree of heterozygosity. Monochromosomal populations were isogenic for a quasinormal + chromosome, dichromosomal populations contained the genetic material of two different + chromosomes, trichromosomal of three, tetrachromosomal of four, hexachromosomal of six and polychromosomal populations of many normal chromosomes. Marker chromosomes with the dominant genesLCy, Cy, Pm orD respectively were added to the populations with an initial frequency of 16,6 per cent. The fate of the dominant markers was different in different populations. In some the marker chromosome reached equilibrium frequencies, in others they were eliminated with variable speed. As a rule the lethal marker chromosomes were accepted by monochromosomal populations; however, they were eliminated from populations with a higher degree of heterozygosity. Since in all populations one genotype, namely the homozygote for the marker chromosome, was lethal, the adaptive values ldquocrdquo of the +/LCy, +/Cy, +/Pm or +/D heterozygotes could easily be calculated from the experimental data. This ldquocrdquo value can be used as a measure for the combining ability of the marker chromosomes. It could be shown that ldquocrdquo depends on the degree of heterozygosity of a population or in other words that the average degree of heterozygosity of the marker free individuals determines the selection processes. An equation can be arrived at which fits the experimental results very well if superiority of heterozygous +/+ individuals over +/+ homozygotes is assumed. From that it was concluded that heterosis is the determining variable in our experiments. An attempt was undertaken in order to decide if in our case the observed heterosis was due to dominance or to overdominance. It was postulated that in di-, tri-, tetra- or hexachromosomal populations the adaptive values of the marker free normals should progressively increase if recessive detrimental genes are the cause of heterosis but not if heterozygosity on many loci leads to overdominance. The ldquoardquo values of the +/+ individuals were ealeulated from the frequency changes of the marker chromosomes for each subsequent two-generation period. Unfortunately only two different dichromosomal populations were available. These showed increasing adaptive values for the normals. The tri-, tetra-, and hexachromosomal populations, however, gave different results, some with increasing, some with fluctuating adaptive values. From that it was concluded that heterosis can be due in one case to dominance and in the other to overdominance. In either case, the recessive genetic load may be rather important as a determinating factor in the dynamics of populations.Dedicated to Prof. Th. Dobzhansky on the occasion of his seventieth birthday in deepest gratitude.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号