首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of Sulfate Assimilation in Plants : XIII. Assimilatory Sulfate Reduction during Ontogenesis of Primary Leaves of Phaseolus vulgaris L
Authors:Schmutz D  Brunold C
Affiliation:Pflanzenphysiologisches Institut der Universität Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
Abstract:The correlation between the extractable activities of three key enzymes of assimilatory sulfate reduction and the in vivo incorporation of 35SO42− into amino acids, proteins, and sulfolipids was investigated from greening to senescence in primary leaves of beans (Phaseolus vulgaris L.). The total extractable activity of ATP sulfurylase (EC 2.7.7.4) and of adenosine 5′-phosphosulfate sulfotransferase reached a maximum in the leaves of approximately 7- and 11-day-old seedlings, respectively. During senescence, there was a decrease in both enzyme activities. After approximately 17 days, no appreciable activities remained. In contrast, total O-acetyl-l-serine sulfhydrylase (EC 4.3.99.8) activity decreased to only approximately 50% of the maximal value during the same period. The in vivo incorporation of 35SO42− into amino acid and protein fractions showed a time-course similar to that of the total extractable adenosine 5′-phosphosulfate sulfotransferase activity. Both cysteine and sulfate markedly decreased during senescence. The total extractable activity of ribulosebisphosphate carboxylase (EC 4.1.1.39) was maximal in the primary leaves of 13-day-old seedlings, and approximately 40% of this value was still detectable after 17 days. Taken together with results from the literature, these results show that assimilatory sulfate reduction in primary leaves of P. vulgaris L. stops before CO2 and nitrate assimilation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号