首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Homocyst(e)ine impairs endocardial endothelial function
Authors:Tyagi S C  Smiley L M  Mujumdar V S
Institution:Department of Physiology and Biophysics, and Center of Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson 39216, USA.
Abstract:Homocyst(e)ine injured vascular endothelium and modulated endothelial-dependent vascular function. Endothelium plays an analogous role in both the vessel and the endocardium. Therefore, we hypothesized that homocyst(e)ine modulated endocardial endothelium (EE) dependent cardiac function. The ex vivo cardiac rings from normal male Wistar-Kyoto rats were prepared. The contractile responses of left and right ventricular rings were measured in an isometric myobath, using different concentrations of CaCl2. The response was higher in the left ventricle than right ventricle and was elevated in endocardium without endothelium. The half effective concentration (EC50) and maximum tension generated by homocyst(e)ine were 10(6) and 5-fold lower than endothelin (ET) and angiotensin II (AII), respectively. However, in endothelial-denuded endocardium, homocyst(e)ine response was significantly increased (p<0.005, compared with intact endothelium) and equal to the response to ET and AII. To determine the physiological significance of ET, AII, homocyst(e)ine, and endothelial nitric oxide in EE function, cardiac rings were pretreated with AII (10(-10) M) or ET (10(-13) M) and then treated with homocyst(e)ine (10(-8) M). Results suggested that at these concentrations AII, ET, or homocyst(e)ine alone had no effect on cardiac contraction. However, in the presence of 10(-10) M AII or 10(-13) M ET, the cardiac contraction to homocyst(e)ine (10(-8) M) was significantly enhanced (p<0.01, compared with without pretreatment) and further increased in the endocardium without endothelium. The pretreatment of cardiac ring with the inhibitor of nitric oxide, Nomega-nitro-L-arginine methyl ester (L-NAME), increased contractile response to homocyst(e)ine. These results suggested that homocyst(e)ine impaired EE-dependent cardiac function and acted synergistically with AII and ET in enhancing the cardiac contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号