首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of an oxidative burst reaction in tobacco cell suspension cultures
Authors:Watt Steven Alexander  Tellström Verena  Patschkowski Thomas  Niehaus Karsten
Institution:Department of Genetics, Faculty of Biology, Bielefeld University, P.O. Box 100131, D-33501 Bielefeld, Germany. steven.watt@genetik.uni-biefeld.de
Abstract:Three of the most abundant proteins (OmpW, MopB and SodM) of the extracellular proteome of Xanthomonas campestris pv. campestris were analysed in a luminol-based oxidative burst assay to identify novel pathogen-associated molecular patterns (PAMP). Tobacco cell suspension cultures were used as a model system to monitor elicitor induced plant defence reaction. The candidate proteins were isolated from two-dimensional gels prior to application to the oxidative burst assay. The superoxide dismutase (SodM) was the only isolated protein that could elicit a notable hydrogen peroxide (H2O2) production in tobacco cell cultures indicating the initiation of plant defence. An alignment of the SodM sequences from X. campestris pv. campestris and Escherichia coli revealed 55.7% identity and 29% of the sequence were substitutions for amino acids with similar physico-chemical properties. By using a commercially available purified E. coli derived SodM preparation, it was possible to show that the amino acid sequence of this protein is responsible for the elicitation of an oxidative burst reaction in the tobacco cell culture model. This suggests that the bacterial superoxide dismutase is a novel pathogen-associated molecular pattern. The minimal elicitor active sequence, however, is still elusive.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号