首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of beta-secretase BACE1 in vitro
Authors:Rentmeister Andrea  Bill Anke  Wahle Tina  Walter Jochen  Famulok Michael
Institution:LIMES Program Unit Chemical Biology & Medicinal Chemistry, Universit?t Bonn, 53121 Bonn, Germany.
Abstract:The beta-amyloid peptide (Abeta) is a major component of the Alzheimer's disease (AD)-associated senile plaques and is generated by sequential cleavage of the beta-amyloid precursor protein (APP) by beta-secretase and gamma-secretase. Since BACE1 initiates Abeta generation it represents a valuable target to interfere with Abeta production and treatment of AD. While the enzymatic activity of BACE1 resides in the extracellular domain, the protein also contains a short cytoplasmic tail (B1-CT). This domain serves as a binding site for at least two proteins, the copper chaperone for superoxide dismutase-1 (CCS), and the Golgi-localized, gamma-ear-containing, ADP ribosylation factor-binding (GGA1) protein, and contains a single phosphorylation site. However, the precise role of the B1-CT for the overall biological function of this protein is largely unknown. Functional studies focusing on the activity of this domain would strongly benefit from the availability of domain-specific inhibitors. Here we describe the isolation and characterization of RNA aptamers that selectively target the B1-CT. We show that these RNAs bind to authentic BACE1 and provide evidence that the binding site is restricted to the membrane-proximal half of the C terminus. Aptamer-binding specifically interferes with the recruitment of CCS, but still permits GGA1 association and casein kinase-dependent phosphorylation, consistent with selective binding site targeting within this short peptide. Because phosphorylation and GGA1 binding to B1-CT regulate BACE1 transport, these RNA inhibitors could be applied to investigate B1-CT activity without affecting the subcellular localization of BACE1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号