首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proton NMR characterization of isomeric sulfmyoglobins: preparation, interconversion, reactivity patterns, and structural features
Authors:M J Chatfield  G N La Mar  R J Kauten
Institution:Department of Chemistry, University of California, Davis 95616.
Abstract:The preparations of sulfmyoglobin (sulf-Mb) by standard procedures have been found heterogeneous by 1H NMR spectroscopy. Presented here are the results of a comprehensive study of the factors that influence the selection among the three dominant isomeric forms of sperm whale sulf-Mb and their resulting detailed optical and 1H NMR properties as related to their detectability and structural properties of the heme pocket. A single isomer is formed initially in the deoxy state; further treatment in any desired oxidation/ligation state can yield two other major isomers. Acid catalysis and chromatography facilitate formation of a second isomer, particularly in the high-spin state. At neutral pH, a third isomer is formed by a first-order process. The processes that alter oxidation/ligation state are found to be reversible and are judged to affect only the metal center, but the three isomeric sulf-Mbs are found to exhibit significantly different ligand affinity and chemical stability. The present results allow, for the first time, a rational approach for preparing a given isomeric sulf-Mb in an optimally pure state for subsequent characterization by other techniques. While optical spectroscopy can distinguish the alkaline forms, only 1H NMR clearly distinguishes all three ferric isomers. The ring current shifts in the carbonyl complexes of reduced sulf-Mb complexes support saturation for a pyrrole in each isomer. The hyperfine shift patterns in the various oxidation/spin states of sulf-Mbs indicate relatively small structural alteration, and the proximal and distal sides of the heme suggest that peripheral electronic effects are responsible for the differentially reduced ligand affinities for the three isomeric sulf-Mbs. The first 1H NMR spectra of sulfhemoglobins are presented, which indicate a structure similar to that of the initially formed sulf-Mb isomer but also suggest the presence of a similar molecular heterogeneity as found for sulf-Mb, albeit to a smaller extent.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号