首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional differential immune responses of Mytilus galloprovincialis to bacterial challenge
Authors:Caterina Ciacci  Barbara Citterio  Michele Betti  Barbara Canonico  Philippe Roch  Laura Canesi  
Institution:aDISUAN, Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura, Università “Carlo Bo” di Urbino, Italy;bDipartimento di Scienze Biomolecolari, sez. Scienze Tossicologiche, Igienistiche e Ambientali, Università “Carlo Bo” di Urbino, Italy;cJRU Ecosystèmes Lagunaires, CNRS-Université de Montpellier 2, France;dDipartimento di Biologia, Università di Genova, Italy
Abstract:Bivalves are filter-feeders that can accumulate large numbers of bacteria, in particular Vibrio species; these can persist within bivalve tissues largely depending on their sensitivity to the hemolymph bactericidal activity. In this work, functional parameters of the hemolymph of Mytilus galloprovincialis were evaluated in response to in vivo challenge with different bacteria (Gram(−) Vibrio anguillarum and V. splendidus, Gram(+) Micrococcus lysodeikticus). Mussels were injected with heat-killed bacteria or PBS-NaCl (controls) and hemolymph sampled from 3 to 48 h post-injection (p.i.). In hemocytes, all bacteria induced significant lysosomal membrane destabilisation (LMS) from 3 h p.i. with V. splendidus > V. anguillarum > M. lysodeikticus. LMS showed recovery for both M. lysodeikticus and V. anguillarum, whereas a further time-dependent decrease was observed for V. splendidus. Bacterial challenge also induced a rapid (from 3 h p.i.) and significant increase in serum lysozyme activity; the effect was persistent with M. lysodeikticus and transient for the two Vibrio species. In order to evaluate whether in vivo challenge may affect the subsequent capacity of hemolymph to kill bacteria, the bactericidal activity was tested in an in vitro assay towards E. coli. At 48 h. p.i. hemolymph samples from V. anguillarum-injected mussels showed a significant increase in E. coli killing (+ 35% with respect to controls); a smaller effect was observed with V. splendidus-injected mussels (+ 16%), whereas M. lysodeikticus was ineffective. Moreover, hemolymph from V. anguillarum-injected mussels showed an in vitro bactericidal activity towards V. anguillarum 2-folds higher than that of controls. Changes in total hemocyte counts (THC) and in hemocyte populations were evaluated by Flow cytometry at 6 and 48 h p.i., indicating a decrease in THC followed by recovery with all bacteria. Moreover, at 6 h p.i. a general decrease in the percentage of granulocytes was observed (V. splendidus > V. anguillarum > M. lysodeikticus), followed by complete and partial recovery with M. lysodeikticus and V. anguillarum, respectively, but not with V. splendidus. The results demonstrate the existence of differential functional immune responses in M. galloprovincialis to different bacteria.
Keywords:Bactericidal activity  Bivalves  Hemocytes  Hemolymph  Lysosomal membrane stability  Lysozyme activity  Mytilus  Vibrios
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号