首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry
Authors:Liu Yu-Hong  Konermann Lars
Institution:Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
Abstract:Conformational dynamics are thought to be a prerequisite for the catalytic activity of enzymes. However, the exact relationship between structural fluctuations and function is not well understood. In this work hydrogen/deuterium exchange (HDX) and electrospray ionization mass spectrometry (ESI-MS) are used for exploring the conformational dynamics of thermolysin. Amide HDX reflects the internal mobility of proteins; regions that undergo frequent unfolding-refolding show faster exchange than segments that are highly stable. Thermolysin is a zinc protease with an active site that is located between two lobes. Substrate turnover is associated with hinge bending that leads to a closed conformation. Product release regenerates the open form, such that steady-state catalysis involves a continuous closing/opening cycle. HDX/ESI-MS with proteolytic peptide mapping in the absence of substrate shows that elements in the periphery of the two lobes are most mobile. A comparison with previous X-ray data suggests that these peripheral regions undergo quite pronounced structural changes during the catalytic cycle. In contrast, active site residues exhibit only a moderate degree of backbone flexibility, and the central zinc appears to be in a fairly rigid environment. The presence of both rigid and moderately flexible elements in the active site may reflect a carefully tuned balance that is required for function. Interestingly, the HDX behavior of catalytically active thermolysin is indistinguishable from that of the free enzyme. This result is consistent with the view that catalytically relevant motions preexist in the resting state and that enzyme function can only be performed within the limitations given by the intrinsic dynamics of the protein. The data presented in this work indicate the prevalence of stochastic elements in the function of thermolysin, rather than supporting a deterministic mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号