CAENORHABDITIS ELEGANS Fertilization-Defective Mutants with Abnormal Sperm |
| |
Authors: | Yair Argon and Samuel Ward |
| |
Affiliation: | The Department of Embryology, The Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland 21210;The Department of Biological Chemistry, Harvard Medical School |
| |
Abstract: | Seven new fertilization-defective mutants of C. elegans have been isolated and characterized; six are temperature sensitive, one is absolute and all are autosomal recessive. One mutation is in a previously described gene, while the other six define six new fer genes that appear to code for sperm-specific functions necessary for normal fertilization. In all fer mutants, both males and hermaphrodites accumulate sperm in near normal numbers. In hermaphrodites, mutant sperm contact the oocytes, but fail to fertilize them. Instead, the sperm are swept into the uterus by the passing oocytes and are expelled when oocytes are laid. Males of two fer mutants do not transfer sperm during copulation, but the other mutant males transfer sperm that fail to move to the spermatheca. Spermatozoa from fer-1 and fer-4 mutants are motility-defective in vitro as well as in vivo, and their pseudopods have an altered morphology. The period of development during which mutant hermaphrodites are temperature sensitive for fertility overlaps the time of sperm development. Some mutants are temperature sensitive throughout the entire period, and others are temperature sensitive during or just prior to spermiogenesis. In fer-4/+ and fer-7/+ males, the fertility of the mutation-bearing sperm is diminished, reducing the transmission ratio. This implies some post-meiotic expression of these genes.—This set of mutants provides a variety of functional and structural alterations in nematode sperm that should help identify and analyze gene products involved in sperm morphogenesis and motility. |
| |
Keywords: | |
|
|