首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature limits to early development of the New Zealand sea urchin Evechinus chloroticus (Valenciennes, 1846)
Authors:Natalí J Delorme  Mary A Sewell
Institution:1. Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand;2. School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
Abstract:Seawater temperature is an important environmental factor for the early life stages of marine invertebrates. In this study we evaluated and described the effects of temperature during early development of E. chloroticus, identifying the optimum temperature range and upper thermal limit for successful development. The temperature range evaluated was between 15–24 °C which included the normal seawater temperatures during the spawning season in northern New Zealand, as well as the highest temperature projected by the IPCC for this region due to global warming (1–3 °C by the year 2100). Gametes from several females and males were used in the experiment. Fertilization was carried out at different temperatures and development was monitored at different time points after fertilization in each temperature. The development rate of E. chloroticus increased with an increase in seawater temperature. However, at temperatures higher than 21.5 °C the amount of abnormal development reached ∼30%. The optimum temperature for early development was between 15–21 °C, whereas the upper thermal limit was ∼24 °C. Therefore, early development of E. chloroticus is negatively affected by an increase in seawater temperature of ∼3–4 °C above current seawater temperature levels in northern New Zealand. The thermal sensitivity of early life stages of E. chloroticus could affect survival rates during early development of this species in a global warming scenario, which could impair recruitment in populations which are exposed to higher temperatures, leading to possible distributional shifts of this species.
Keywords:Thermal limit  Development  Climate change  Embryo  Sea urchin  Evechinus chloroticus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号