首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of hyperthermia on cell viability,oxidative damage,and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus)
Authors:Yanting Cui  Bo Liu  Jun Xie  Pao Xu  HMichael H Tsion  Yuanyuan Zhang
Institution:1. Wuxi Fishery College, Nanjing Agriculture University, Wuxi 214081, China;2. Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Abstract:The purpose of the study was to investigate the effects of mild hyperthermia on cell viability, release of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, malondialdehyde (MDA) formation, total antioxidant capacity (T-AOC), and the relative mRNA levels of heat shock protein (HSP60, 70, and 90) in hepatic cells of grass carp (Ctenopharyngodon idellus) before and after temperature stress. Cultured cells were exposed to thermal stress (32 °C) for 0.5, 1, 2, 4, and 8 h. The results showed that hyperthermia stress significantly reduced cell viability (P<0.01) and increased LDH release at 0.5 and 1 h (P<0.05). Additionally, hyperthermia stress led to oxidative stress as evidenced by significantly decreased T-AOC after treating cells for 0.5 and 8 h (P<0.05). SOD activity also significantly decreased after 1 h of stress (P<0.05), but MDA formation increased after 8 h of stress (P<0.05). This may be partly responsible for the lower cell viability and higher LDH release we observed. The differences between SOD activity, MDA formation, and T-AOC between the 2 h treatment group and the control were smaller than that of other groups. This indicated that cellular antioxidant enzyme systems play an important role in the defense against oxidative stress. Further tests showed that the expression of HSP60 at 1, 2, and 4 h (P<0.05), HSP70 at 0.5 and 1 h (P<0.01), and HSP90 at all time points after stress were higher (P<0.01) than pre-stress levels. This suggested that HSPs possess the ability to modulate cellular anti-stress responses and play key roles in protecting organisms from heat stress. In conclusion, hyperthermia inhibits cell proliferation, induces cell oxidative stress, and enhances HSP expression in hepatic cells of grass carp.
Keywords:Hyperthermia  Oxidative stress  HSPs  Hepatic cell  Grass carp
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号