首页 | 本学科首页   官方微博 | 高级检索  
     


Response of an integral granule membrane protein to changes in pH
Authors:Bell-Parikh L C  Eipper B A  Mains R E
Affiliation:Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Abstract:A key feature of the regulated secretory pathway in neuroendocrine cells is lumenal pH, which decreases between trans-Golgi network and mature secretory granules. Because peptidylglycine alpha-amidating monooxygenase (PAM) is one of the few membrane-spanning proteins concentrated in secretory granules and is a known effector of regulated secretion, we examined its sensitivity to pH. Based on antibody binding experiments, the noncatalytic linker regions between the two enzymatic domains of PAM show pH-dependent conformational changes; these changes occur in the presence or absence of a transmembrane domain. Integral membrane PAM-1 solubilized from rat anterior pituitary or from transfected AtT-20 cells aggregates reversibly at pH 5.5 while retaining enzyme activity. Over 35% of the PAM-1 in anterior pituitary extracts aggregates at pH 5.5, whereas only about 5% aggregates at pH 7.5. PAM-1 recovered from secretory granules and endosomes is highly responsive to low pH-induced aggregation, whereas PAM-1 recovered from a light, intracellular recycling compartment is not. Mutagenesis studies indicate that a transmembrane domain is necessary but not sufficient for low pH-induced aggregation and reveal a short lumenal, juxtamembrane segment that also contributes to pH-dependent aggregation. Taken together, these results demonstrate that several properties of membrane PAM serve as indicators of granule pH in neuroendocrine cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号