首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain
Authors:Catarina L Amorim  António C S Ferreira  Maria F Carvalho  Carlos M M Afonso  Paula M L Castro
Institution:1. CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072, Porto, Portugal
2. CEQUIMED-UP, Laboratório de Química Organica e Farmacêutica, Departamento Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira no228, 4050-313, Porto, Portugal
Abstract:A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of the genus Rhodococcus. Strain S2 was able to mineralize 4-FCA as sole carbon and energy source. In the presence of a conventional carbon source (sodium acetate SA]), growth rate of strain S2 was enhanced from 0.04 to 0.14 h?1 when the culture medium was fed with 0.5 mM of 4-FCA, and the time for complete removal of 4-FCA decreased from 216 to 50 h. When grown in SA-supplemented medium, 4-FCA concentrations up to 1 mM did not affect the length of the lag phase, and for 4-FCA concentrations up to 3 mM, strain S2 was able to completely remove the target fluorinated compound. 4-Fluorobenzoate (4-FBA) was transiently formed in the culture medium, reaching concentrations up to 1.7 mM when the cultures were supplemented with 3.5 mM of 4-FCA. Trans,trans-muconate was also transiently formed as a metabolic intermediate. Compounds with molecular mass compatible with 3-carboxymuconate and 3-oxoadipate were also detected in the culture medium. Strain S2 was able to mineralize a range of other haloorganic compounds, including 2-fluorophenol, to which the biofilm reactor had been exposed. To our knowledge, this is the first time that mineralization of 4-FCA as the sole carbon source by a single bacterial culture is reported.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号