首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture
Authors:Yuting Zhang  Zhigang Zhou  Yuchun Liu  Yanan Cao  Suxu He  Fengmin Huo  Chubin Qin  Bin Yao  Einar Ringø
Institution:1. Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People’s Republic of China
2. Norwegian College of Fishery Science, University of Troms?, Troms?, 9037, Norway
Abstract:Chitin, present in crustacean shells, insects, and fungi, is the second most plentiful natural organic fiber after wood. To effectively use chitin in a cost-saving and environmentally friendly way in aquaculture, crustacean shells (e.g., shrimp-shell meal) are supplemented into aquafeed after degradation by chemical methods. Herein, we describe a chitinase from Aeromonas veronii B565, designated ChiB565, which potently degrades shrimp-shell chitin and resists proteolysis. We isolated recombinant ChiB565 of the expected molecular mass in large yield from Pichia pastoris. ChiB565 is optimally active at pH 5.0 and 50 °C and stable between pH 4.5 and 9.0 at 50 °C and below. Compared with the commercial chitinase C-6137, which cannot degrade shrimp-shell chitin, ChiB565 hydrolyzes shrimp-shell chitin in addition to colloidal chitin, powdered chitin, and β-1,3-1,4-glucan. The optimal enzyme concentration and reaction time for in vitro degradation of 0.1 g of powdered shrimp shell are 30 U of ChiB565 and 3 h, respectively. A synergistic protein-release effect occurred when ChiB565 and trypsin were incubated in vitro with shrimp shells. Tilapia were fed an experimental diet containing 5 % (w/w) shrimp bran and 16.2 U/kg ChiB565, which significantly improved growth and feed conversion compared with a control diet lacking ChiB565. Dietary ChiB565 enhanced nitrogen digestibility and downregulated intestinal IL-1β expression. The immunologically relevant protective effects of dietary ChiB565 were also observed for 2 to 3 days following exposure to pathogenic Aeromonas hydrophila.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号